
NASA-CR-193665

TELEROBOTIC CONTROL

ROBOTIC
M_BILE COORDINATED

SERVER

NAG-l-1283-2

/ /

4..

ANNUAL TECHNICAL REPORT

Executive Summary

This annual report is comprised primarily of results from the Master's Degree Thesis of

Mr. Darrell Gerber, a graduate student supervised by the principal investigator on this project. The
goal of this effort is to develop advanced control methods for flexible space manipulator systems.
As such, an adaptive fuzzy logic controller has been developed in which model structure as well as

parameter constraints are not required for compensation. The work builds upon previous work on
fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of
automatic feedback control. Hardware controllers using fuzzy logic have become available as an
alternative to the traditional PID controllers. Software has also been introduced to aid in the
development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the
ability to merge the experience and intuition of expert operators into the rule-base and that a model

of the system is not required to construct the controller. A drawback of the classical fuzzy logic
controller, however, is the many parameters need to be tuned off-line prior to application in the

closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system
model or model structure. The rule-base is def'med to approximate a state-feedback controller

while a second fuzzy logic algorithm varies, on-line, parameters of the def'ming controller. Results
indicate the approach is viable for on-line adaptive control of systems when the model is too

complex or uncertain for application of other more classical control techniques.

(NASA-CR-193665) TELFRO_OTIC
CONTROL OF A MOBILE COOROINATEO

ROBOTIC SERVER M.S. Thesis Annual

Technical Report (North Carolina
State Univ.) 75 p

N94-103_5

Unclas

G3/63 0177411

TABLE OF CONTENTS

iv

LIST OF FIGURES ... v

LIST OF SYMBOLS ... vi

LIST OF ABBREVIATIONS .. viii

CHAPTER I: INTRODUCTION ... 1

CHAPTER II: NON-ADAPTIVE FUZZY LOGIC CONTROLLER 3

A: The rule-base ... 3
B: Defuzzifier ... 10

C: Input and output scaling .. 11

CHAPTER III: TUNING A FUZZY LOGIC CONTROLLER 13

A: Choosing the rule-base .. 14
B: Adaptation routine ... 17
C: Performance characteristics ... 20

CHAPTER IV: SIMULATION RESULTS ... 22

CHAPTER V: CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 29

CHAPTER VI: LITERATURE CITATIONS ... 31

APPENDICES .. 33

APPENDIX A: EXPLANATION OF PROGRAM ... 35

Main program .. 35
Fuzzy logic control routine ... 36
Steady-state error estimation routine .. 37
Fuzzy logic adaptation routine .. 37

APPENDIX B: FLOW CHARTS .. 38

Main program block .. 38
Fuzzy logic control routine ... 39
Steady-state estimation routine ... 40
Fuzzy logic adaptation routine .. 41

APPENDIX C: PROGRAM LISTING .. 42

LIST OF FIGURES

CHAPTER II

1. Non-adaptive fuzzy logic controller block diagram ... 3
2. Common membership functions ... 5
3. Example finding membership value of the membership function TALL 6
4. Sample rule-base ... 7
5. Graphical representation of the sample rule-base ... 8
6. Logic AND .. 9
7. Evaluation of an example antecedent block .. 9

CHAPTER III

8. PD control surface ... 15

9. Control surface of a fuzzy logic controller approximating 16
a PD controller

10. Variables defining the control surface orientation .. 17
11. Vertical pendulum ... 18
12. The effects on the vertical pendulum of varying d, 0, and _ 19

CHAPTER IV

13. Adaptive fuzzy logic controller block diagram ... 22
14. Response of the vertical pendulum using the .. 22

adaptive fuzzy logic controller
15. Responses of the vertical pendulum for various X and T. 23
16. DR106 robot .. 24

17. Response of the DR106 robot using the adaptive fuzzy logic controller 26
18. Responses of systems having time varying inertias .. 27
19. Vertical pendulum having time delays .. 28

LIST OF SYMBOLS

vi

ce ... change in error
ce ... change in error in position
ce(k) .. current change in error in position
d .. displacement of the control plane along the e-axis
D ... derivative parameter
e .. error

e .. error in position
e(k) .. current error in position
e(k-1) ... previous error in position

6 .. time rate of change of error in position

E ... weighted running sum of the error in position

E o ... E from previous time step

g .. acceleration due to gravity (9.81 m/s 2)
k .. current time step
L ... length of the vertical pendulum arm
M ... mass matrix for DR106

n .. number of time steps taken
O(k) ... output to the system
P .. proportional parameter
QE(k) ... quantized error in position
QECA(k) ... quantized change in error angle
QO , .. quantized output
QO(k) ... current quantized output
r(k) ... current reference input

... vector of non-linear terms for DR106

sse ... approximate steady-state error

'I' .. torque vector for DR 106
u .. PD controller output
u ... results from the antecedent blocks

ui .. result from the ith antecedent block

U ... center values of the consequence block membership functions

Ui center value of the membership function of the ith consequence block

(V 2) .. weighted running sum of the square of the error in velocity

(V2)o .. (V2i from the previous time step

y(k) .. system response

Ad .. change in d

¢ ... inclination of the control plane from the e- 6 plane

T ... velocity penalty factor
_. .. forgetting factor

p.(_) .. membership value to fuzzy set (_)

0 .. rotation of the control plane about the u-axis

0 ... angular position of the vertical pendulum

vii

§ ..positionvectorfor DR106
On..angleof joint nof DR 106
'r ... control forces to the vertical pendulum
'rn .. torque applied to joint n of DR106

°..

Vlll

LIST OF ABBREVIATIONS

MRAC ... Model Reference Adaptive Control
PD .. Proportional-Derivative
PID .. Proportional-Integral-Derivative

CHAPTER I: INTRODUCTION

Many of the current and future control applications are too complex for traditional

controllers due to the presence of non-linearities, varying or uncertain parameters, and/or

time delays. These applications require the use of a robust adaptive controller. Many

adaptive controllers (MRAC, Self-Tuning Adaptive Controllers, joint space control [1],

and global linearization [2], for example) have been offered; however, developing a

model of sufficient accuracy may be impossible or too difficult to be practical.

Fuzzy logic controllers have been shown to be an acceptable alternative to model

based controllers [3,4]. Fuzzy PID control has been applied to several process control

and automotive systems [5-7] in which the time constants were somewhat large. The use

of fuzzy logic to control robotic systems has yielded some success [8-11] although issues

such as time delays and initial conditions sometimes limit the application of these

algorithms.

The rule-base of a standard fuzzy logic controller is developed from linguistic

rules stating the reaction of an experienced operator to various situations. An alternate

approach is to choose the rule-base to approximate the behavior of another controller.

The advantage of this is that the versatility of the fuzzy logic controller and the known

characteristics of the approximated controller are both retained.

The flexibility of the fuzzy logic controller is counteracted, however, by the

increased number of parameters that need to be tuned. Various adaptive fuzzy logic

controllers have been offered as a solution to this problem. Many of them, however,

circumvent the advantages of a fuzzy logic controller by requiring that a model of the

system be known. This thesis develops an adaptive fuzzy logic controller that is able to

handle the uncertainties in complex systems without requiring a system model.

As an extension of previous work [12], the approach uses a PD structure to form

the rule-base. The parameters of the rule-base are varied on-line by an adaptation routine

2

utilizing anotherfuzzy logic controller. Themethodis appliedto averticalpendulumas

well asarobotic systemto illustrateits applicability.

ChapterII givesabrief overviewof fuzzylogic controllers,while ChapterHI

developsthetuningalgorithm. In ChapterIV theadaptivefuzzy logiccontroller is

appliedto severalcomplexsystems.Resultsindicatethetechniqueis arobustalternative

to traditionalsolutions.Finally, ChapterIV providessomeconcludingremarksaswell as

areasof potentialfuturework.

CHAPTER H: NON-ADAPTIVE FUZZY LOGIC CONTROLLER

3

Before an adaptive fuzzy logic controller is attempted, one should have a basic

understanding of how a non-adaptive fuzzy logic controller works. The structure of a

fuzzy logic controller can be represented as in Figure 1.

Figure 1: Non-adaptive fuzzy logic controller block diagram

From this figure, the important parts of a fuzzy logic controller can be seen; these are the

A. Rule-base

B. Defuzzifier, and

C. Input and Output Scaling

Each of these components will now be dealt with.

A: THE RULE-BASE

The rule-base is the heart of every fuzzy logic controller. As can be inferred, the

fuzzy logic controller uses a number of rules to def'me the relationship between the input

and the output of the controller. What differentiates a fuzzy logic controller from other

rule-based controllers is that it uses methods of fuzzy implication and compositional rules

of inference.

4

Therulesin thefuzzy logic controllerarebasedon linguistic rulesof theform

IF one condition AND another condition THEN do something

At the start these rules vary greatly depending on the application and the individual

interpretation of the situation being described by the rule. For instance, if describing the

manual control of the temperature in a room, one rule could be

IF the temperature is much too hot AND the temperature is dropping fairly fast

THEN turn the furnace up a little bit

Of course this is only one way of stating this particular situation and action. To eliminate

the inconsistency that is inherent with this type of formulation a standard vocabulary is

adopted. This new vocabulary consists of words such as LARGE, MEDIUM, SMALL

and POSITIVE, NEGATIVE, ZERO. Stating the previous example using this new

vocabulary changes it to

IF error in temperature is large positive AND change of error in temperature is

medium negative THEN change furnace small positive

Even though this is a more general and tractable statement it is still no more

or concrete. Error in temperature, change of error in temperature, and change

' exact measurements but what are large positive, medium negative, and small

"_w are they all related?

"c is uniquely appropriate here because people do not usually think of

"large" or "not large" but rather think "how large is it?" This

5

illustratesthedifferencebetweenwhatis usuallythoughtof aslogic (Booleanlogic) and

fuzzy logic. Booleanlogic dealswith whethersomethingis or is not amemberwhile

fuzzylogic dealswith varyingdegreesof membership.It shouldalsobementionedthat,

contraryto what is oftenthought,fuzzylogic hasnothingto dowith probability. Fuzzy

logic doesnotconsidertheprobabilityof membership- only thedegreeof membership.

Thedegreeof membershipis determinedby amembershipfunction. This is the

connectionbetweenthe"fuzziness"of therealworld andtheexactnessof mathematics.

Membershipfunctionscanbeof anyshapebut theymustonly havevaluesbetween0 and

1; thatis, betweenno membership and complete membership. Most membership

functions are symmetric and simple. Several common shapes are shown in Figure 2.

Notice that Boolean logic can be considered a subset of fuzzy logic as the last

membership function shows.

Bell Shaped Trapezoidal Triangular Sinusoidal Rectangular

(Boolean)

Figure 2: Common membership functions

The shape of the membership function has been shown to be nearly arbitrary [11].

Therefore, the choice can be based on such things as ease of calculation, appropriateness

to the application, and personal preference. The fuzzy logic controllers developed here

use a sinusoidal membership function. This is because it is smooth, symmetrical, and

based on a simple mathematical function.

6

The applicationof themembershipfunction requirestheintroductionof theterm

universe of discourse. The universe of discourse is the minimum region over which the

variable of interest is expected to exist. The membership function will be defined within

this same region. To get a better understanding, let us look at a simple example.

Consider a universe of discourse of the possible heights of full grown males. Upon this,

define a triangular membership function TALL centered on 6'2" and intersecting the axis

at 5'11" and 6'6". This is shown graphically in Figure 3.

i7 6' 6' _0 '''1_5' 5 6 2" 5"
6'0"

Figure 3: Example finding membership value of the membership
function TALL

On the basis of on this we want to determine how TALL a guy 6'0" is. It is easy to see

that he is .33 (or 33%) TALL.

Now that the rule-base, membership function and universe of discourse have been

introduced their relationship needs to be determined. To facilitate a more organized

discussion, the structure of the rules needs to be better defined. Therefore, consider rules

of the form

IF antecedent block THEN consequence block

Up to this point, only individual rules dealing with a single situation have been

considered. However, an effective controller must be able to handle many distinct

situations. This requ/_res that several different rules be developed. The accumulation of

these rules is the rule-base. The fin'st step in developing the rule-base is to determAne how

many elements will be in the antecedent and consequence blocks. These correspond to

the number of inputs and outputs, respectively. The second step is to determ/ne how

many distinct membership functions will be defined for each element of the antecedent

and consequence blocks. For the rest of this development we will use a combination of a

two input, one output rule-base with seven distinct membership functions (LARGE

NEGATIVE, MEDIUM NEGATIVE, SMALL NEGATIVE, ZERO, SMALL

POSITIVE, MEDIUM POSITIVE, and LARGE POSITIVE) for each. The membership

functions will be centered such that no more than two will have non-zero values at any

time. A sample rule-base is shown in Figure 4.

7

IF error is LN AND change in error is LN THEN LP

IF error is LN AND Change in error is MN THEN LP

IF error is LN AND change in error is SN
• THEN MP

IF error is LP AND Change in error is LP THEN LN

Figure 4: Sample rule-base

It sh/(ould be obvious that the largest possible number of distinct rules for this rule-

base is 49 7 membership functions)(2 inputs)]. When the maximum number of rules is

defined the rule-base is fully populated. A fully populated rule-base is usually used; but

it couldhappenthatsomeof thesituationscanneverpossiblyoccur. In suchcasesthe

correspondingrulesmaybeleft undef'med.An exampleof thissituationis whena

robotic armis preventedfrom movingaboveacertainvelocity nearadelicateinstrument.

Figure 5 showsanotherwayof representingtherule-basein which the

membershipfunctionsarerepresentedgraphically. Fromthis it canbeseenthatmore

thanonerule mayapplyat anymoment.However,it hasbeenshown[15] thatfor this

particularlayoutof rulesnomorethanfour ruleswill bein effectat anyonemoment.

-.6.0 -4.0 .0 2.0 .0-6.0 -4.0 .2.0 0.0 2,.0 4.0 6.0

anteced6nt blocks consequehce blocks

Figure 5: Graphical representation of the sample rule-base

The fin'st step in determining the output is the resolution of the antecedent block

using the Logic AND operator. There are various possible definitions of Logic AND

[14], a few of which are

i) AND(B(A),IX(B)) = min(IX(A),IX(B))

ii) AND(IX(A), IX(B)) = max(0,ix(A) + p(B) - 1)

iii) AND(It(A), IX(B)) = max(1 - IX(A), _t(S))

iv) AND(IX(A),IX(B)) = min(1,1 - p(A) + It(B))

9

The result of each of these is shown in Figure 6 for a given IX(A) and a varying Ix(B).

1.0

_A)

(i) (ii) (iii) (iv)

--. _(B)

-- AND(_(A)._(B))

V

Figure 6: Logic AND

Definition (i) will be used throughout this paper. To illustrate how this is

evaluated, consider the rule-base in Figure 5 and a situation where error is -6.0 and the

change in error is -5.3. Figure 7 shows the evaluation of the antecedent blocks for these

inputs.

6.0 -4.0-2.0

IF -': IL_
_ '._o.0 -4.0

I

IF _ _.o'_.4'
• .0 -':'0

I
I
I

IF _[, ,
.0 -4.0-2.0

I

e = -6.0

error _hange in error

r "AND]
0.0 2.0 4.0 6.0 -6f-4.0 -2.0 0.0 2.0 4.0 6.0

•.o_.o o o_o ,• 4.0

I

• ,.o".o -_]_-,.o.,_oo.o:.o ,.o'_o'"
• I •

[S '] ::,, _ AND--' ,I I , , _
0.0 2.0 4.0 6.0 -_-,.0 .2.00.0zo ,.0 _.0

I

ce = -5.3

Ul = min(1.0,0. 9) = 0.9

u2 = min(1.0,0.3) = 0.3

u3 = min(1.0,0. 0) = 0.0

_ u49= min(O.O,O.O)= 0.0

lO

Figure 7: Evaluation of an example antecedent block

B: DEFUZZIFIER

Now that the result of the antecedent blocks has been found, the output from the

controller needs to be calculated. Various methods have been proposed [17]. One of

these is the maximum of grade of membership. In this method

QO=max{u}

Unfortunately, from nonlinear control system theory, we know this method suffers from

poor precision (from dead zone) or unavoidable oscillation (from lack of a dead zone)

[18].

Another defuzzifier is the center of gravity method given by

f uUdU

ao = f udU

11

This method gives a better control performance, but the calculation can become quite

burdensome due to the iterative algorithms often needed to evaluate the integrals. This

leads to the approximate center of gravity method.

N

Z(u,×u,)
QO = i=1 N

2,u,
i=l

Due to ease of calculation and superior performance, the approximate center of gravity

defuzzifier will be used from here on.

As can be seen it is unnecessary to define the membership functions for the

consequence blocks since only the position of the center is needed. This is because the

membership functions are necessary only to "fuzzify" a value. Since the results of the

antecedent blocks are already fuzzy all that needs to be done is to defuzzify them.

C: INPUT AND OUTPUT SCALING

The universe of discourses used for all the antecedent and consequence blocks

shown in Figure 5 range from +6 to -6. It should be obvious that this may not be the most

appropriate choice for all possible inputs and outputs. However, to improve the

portability of the rule-base it is desirable not to change the universe of discourse for each

12

newsystem.A compromiseis foundby applyinga scalingfactorto eachelement

dependingon themaximumexpectedvaluesandthesizeof thegeneralizeduniverseof

discourse.

In applicationswheretheinputsarereadthroughtransducersandtheoutputsgo

throughactuatorsthescalingfactorsaredependenton thephysicallimitationsof the

components.Another case when the maximum expected value is easily determined is

when the inputs and outputs must pass through an analog/digital interface. In this

instance the range is dependent on the voltage range used and the number of digital bits

used.

Usually the scaling factors are linear relationships; but, this is not necessary. A

situation in which a non-linear relationship may be desirable is when the expected values

approach +oo. This often happens when, as is the case here, the change in error is

calculated rather than read from a sensor. A unique solution to this problem was offered

by Stanley [12]. He transformed the range of values from +co to _+90 by taking the arc

tangent of the change in error. The scaling factors to be used in the fuzzy logic controller

presented in this thesis are

QE/ 6 1= -(error)
maximum error

0 A:/ 6 / I /maximum change in error angle • tan-1 chang __n error

0 = (maxim6m t°rque] • (QO)

CHAPTER HI: TUNING A FUZZY LOGIC CONTROLLER

13

Controllers of all varieties need to be tuned in some manner. Fuzzy logic

controllers are no different. Unfortunately, the flexibility that is gained by using a fuzzy

logic controller is accompanied by an increased number of parameters that need to be

tuned. The scaling factors for each input and output can be varied, the shape of the

membership functions can be changed, and the rule-base itself may be altered.

There are two ways the scaling factors can be tuned. The first is to change the

function itself. A variety of linear or non-linear functions can be used. The other way of

tuning the scaling factors is to change the limiting values. This is the most common

scheme for auto-tuning and adaptive fuzzy logic controllers [14] since there are fewer

possible variations and the effects are more obvious - a small range will give a quicker

controller while a larger range gives a more sluggish yet robust controller. The scaling

factors are usually tuned off-line depending on the particular system. However, if the

plant undergoes known, predictable variations the scaling factors may also be tuned on-

line using a gain scheduling routine.

Varying the shape of the membership function, as already mentioned, has little

effect on the performance of the controller. However, if one is concerned with the shape

of the control surface this is an important factor.

The tuning method used by the adaptation routine developed in this thesis is to

vary the rule-base. One reason for this choice is the flexibility in the possible types of

variations. Another reason is that while the scaling factors define the fuzzy logic

controller's interaction with the rest of the system the rule-base defines the character of

the controller. Varying the rule-base is particularly suited to on-line adaptation routines

because the performance characteristics of the system are directly related to the rule-base.

This will become more evident as the adaptation routine is developed.

A: CHOOSING THE RULE-BASE

14

When the basic fuzzy logic controller was developed it was stated that the fuzzy

rules were based upon linguistic rules derived from human responses to particular

situations. There is another possible method for choosing the rule-base. The rule-base

can be chosen such that the fuzzy logic controller approximates the performance of

another type of controller. The advantage of this method is that controllers whose

characteristics can be found analytically (optimal controllers and pole-placement

controllers, for example) can then be approximated by the flexible and versatile fuzzy

logic controller.

An easy way to visualize this method of choosing a rule-base is with a control

surface. The control surface of any controller is found by plotting the outputs versus the

inputs. Since a two input/one output configuration has a three-dimensional control

surface (which can be easily drawn) this structure will be considered from this point on.

One of the simplest controllers fitting this constraint is the PD controller.

Consider the PD controller defined by Eq. (1) and the resulting control surface shown in

Figure 8. As can be seen the control surface is simply a plane.

u = Pe+De

15

Eq. (1)

Figure8: PD controlsurface

ChenandJang[15]developedanalgorithmto imitatea statefeedbackcontroller

by correctlychoosingtherulesin afuzzylogic rule-base.Whattheirmethodeffectively

doesis to discretizetheinput rangesof thestate-feedbackcontrollerandthendefinethe

rulesof thefuzzy logic controllerto exactlymatchthevalueof thestate-feedbackcontrol

surfaceat thesepoints. Thevaluesin betweenareapproximatedby thefuzzylogic AND

andtheapproximatecenterof gravitymethodsalreadydiscussed.

When this techniqueis usedfor thePD controllerin Eq.(1) we getthefuzzy logic

controllerhavingthecontrol surfaceshownin Figure9. Two thingsshouldbementioned

beforecontinuing. Thefirst is thatthiscontrollercorrespondsto astate-spacecontroller

havinga2xl input vectorandascalaroutput. Thecontrolleralsohasa planar

relationshipbetweeninput andoutput. Bothof thesecharacteristicswerechosenfor

simplicity of designnotbecauseof anyrestrictionsinherentin themethodology.Another

importantobservationis thatasmorerulesareusedthefuzzy logic controllerwill more

closelyapproximatethestatefeedbackcontroller.

particularapplication.

16

Theimportanceof thisdependson the

6

2

O

Figure 9: Control surface of a fuzzy logic controller approximating
a PD controller

The algorithm developed by Chen and Jang [15] selects the rule-base external to the

actual use of the controller. However, there is no reason that a similar function can not be

performed while the controller is in operation. This is an important step to the research

presented here because it allows the rule-base to be adapted by varying the state-feedback

controller that it approximates.

Therule-baseis definedby first choosingthedesiredstate-feedbackcontroller.

Thepositionof eachrule is givenby coordinatesin thephaseplane. Theequation

defining thestate-feedbackcontrollerandthecoordinatesfor eachrule arethenusedto

definetheconsequenceblock of thatrule.

As alreadymentioned,thestatefeedbackcontrollerusedis of thesame

dimensionsasEq.(1). However,ratherthatdefinethecontrollerusingtheP andD

variables,it is definedby therotation(0) andtheinclination (_) of thecontrolsurface.

(Eq. (2),Figure10) Anotherdegreeof freedomis addedbyallowing thesurfaceto be

displacedalongtheerroraxis (d). Theimportanceof thisbecomesevidentlater.

Selectionof thesecontrolparameterstransformsthecontrollerdefinition from a

mathematicalequationintoa morevisualizable,graphicaldefinition.

tan__e dtan_u= - tan_+ -
tan0 tan0

17

(2)

:: - ,: ii iiiiiiiiiiiiiiii iiiiiiiii iiiii iiiiiiiiiiiiiiiii,.
 i:iiiiiiiii:iii:iii:iii:il::::::::::::::::::::::::: i!iii!iiii!iiiii

Figure 10: Variables defining the control plane orientation

B: ADAPTATION ROUTINE

18

Since the rule-base has been defined based on a state feedback controller it should

be obvious that the adaptation methods used for state-space controllers can also be used

for the fuzzy logic controller. This is what has been done several times in the literature

[16-18]. However, direct application of this philosophy seems to defeat one of the

primary reasons for using a fuzzy logic controller. One of the driving advantages of the

fuzzy logic controller is that it requires no prior knowledge of the plant; but, the

adaptation routines proposed for a fuzzy logic controller thus far require that a model of

the plant be known. Incidentally, the initial conditions of the adaptive fuzzy logic

controller could be found using various techniques (Ziegler-Nichols and Kalman, for

example). This may not be necessary, though, because the effects of mistuning can be

compensated for both on- and off-line.

One obvious alternative to this philosophy is to use another fuzzy logic controller

in the adaptation routine. Hence, the output will be checked using another rule-base to

determine the necessary variation in the main controller rule-base. To develop the

adaptation rule-base, though, one must understand the effects of varying the different

parameters in Eq. (2).

A simple vertical pendulum, shown in Figure 11, is used to better understand the

effects of varying the parameters in Eq. (2). The system consists of a point mass at the

end of a massless rod. They are attached to a stationary, frictionless, pinned joint.

However, to demonstrate the flexibility of the fuzzy logic controller, the usual small

angle assumption will not be made.

19

Gravity

0 °

Figure 11: Vertical Pendulum

The dynamics associated with this systems are

+ gsine =
L

The desired trajectory is a step response of 1.0rad. To make the response a little more

interesting, atypical initial conditions are used: 0(0) = 2.0_d, 0(0) = -1.0_,d/,.

From the responses shown in Figure 12 we see the primary effects of varying each

of the parameters in Eq. (2): d changes the steady-state error, 0 changes the damping rate,

and _ changes the frequency. This is only the most significant variant of each

performance characteristic, though. This can be seen from Eq. (2) where the third term is

a function of d, 0 and ¢, for example.

2 d-O.O

_ 0.45o

_.45 o
-2

012345878910
MEC,eco)

d" 4.0

-2

2 /!_.

e._ m _ ll|rV_v

-2

2 K /_ [/X I/_.I/_IAI^I^I^I-I

_''0-3.,d _.o v li/lIl I! ll/ _11_fl

012345878910012345878910

TME(,,x=nd,) T_E (,,cond,)

20

- O.01mcI

Figure 12: The effects on the vertical pendulum of varying d, 0, and

It was promised that the importance of adding the d parameter would become

evident - this is the time to illustrate this. All that is done by adding the third parameter,

d, is to give the controller a constant bias (evident in the changing steady-state error).

However, if this parameter is varied adaptively, the effect is the same as having an

integrator. In effect, we have designed a pseudo-fuzzy PID controller. For the remainder

of this thesis, only the variation of d will be investigated. The adaptation of the other two

parameters is the subject of on-going research.

C: PERFORMANCE CHARACTERISTICS

21

It is now necessary to develop a method to estimate the steady-state error. It

should be mentioned that it is not necessary to actually find the steady-state error. All

that is needed is some bounded function that varies with the steady-state error.

When developing a method to estimate the steady-state error there are some

characteristics which are desirable. One is that the estimate should remain small while

the transients still exist. This is wanted because, since the estimate will be used to vary

the rule-base, the estimate should remain small while it is most uncertain (i.e. - while the

system is not in steady-state). Another desired characteristic is that past information

should be used without using an array to store it. The reason for this is to make the

system less sensitive to sudden variations in the response without requiring large amounts

of computer memory.

The equation to be used is

sse=
r

where

() -From Eq. (3), it can be seen that as y. V 2 _ 0, sse _ E. Also as n _ ** and e = sse

(actual steady-state error), E _ sse. Let us see how Eq. (3) has the desired

characteristics. The y.(V 2) term in the denominator keeps ss-"e small while (V 2) is still

large. The term, 7, allows the strength of the effect to be adjusted. The definitions for E

and (V 2) fulfill the other requirement that past values of the error in position and the

22

errorin velocity beused.This is doneby usinga weightedrunningsumof thevalues

insteadof just thepresentvalue. Thevariable, k, is theforgetting factor(weighting

variable)which,if between0 and+1,giveslessweight to thepastvaluesthanthepresent
value.

Stochasticformulationssimilar to Eq.(3) havebeenusedin thepastbasedon the

averageerrorandthestandarddeviationof theerror. Unfortunately,thisrequiresa

statisticalanalysisat eachtime step.This couldbecomecomputationallyburdensome

andrequiretheuseof largearrays.Eq.(3) usesthesameprinciplebut effectively

circumventstheseproblems.

CHAPTER IV: SIMULATION RESULTS

23

Using ss---eas the input and Ad (change in d) as the output a simple fuzzy logic

controller can be developed for the adaptation routine. The structure of the adaptive

fuzzy logic controller is shown in Figure 13.

Figure 13: Adaptive fuzzy logic controller block diagram

The results of using this controller on the vertical pendulum already presented is

shown in Figure 14.

2

tu

-2
0 1 2 3 4 5 6 7 8 9 10

TIME (seconds)

_.=0.5

y=5.0

Figure 14: Response of the vertical pendulum using the adaptive fuzzy logic controller

24

Thesteady-stateerrordueto thegravitationalbiashasbeeneliminatedveryeffectively

but it wouldbe interestingto know theeffectsof varyingthe_,andy. Theseareshownin

Figure 15.

-2,

2.- 0.85 k- 0.5
-2 I I

0 1 2 3 4 5 $ 7 II g 10 0 1 2 3 4 5 B 7 8 9 10
TIME (e_onO_) TIME (_concl_)

Figure 15: Responses of the vertical pendulum for various _, and 7

The left column of Figure 15 shows a varying k increasing from top to bottom

while the right column shows the same for y. The results are what should be expected.

Since X is the forgetting factor, increasing it will include more of the past information.

This would make the response quicker but less robust. In this example, the system is

unstable for k > 0.85. Varying yhas a similar affect on the response. Since yis the

weight for the velocity penalty, large values will cause the adaptation routine to wait until

more of the transients die out to vary the parameter. Thus, the system will be slower but

less likely to be affected by poor estimates. The system in Figure 15 is unstable for 1, <

1.0. From these findings it should be evident that the controller is made more robust for

small _ and large y. This is important for systems that are complex or have varying

parameters.

25

As anexampleof amorecomplexsystemconsidertherobot shownin Figure

16(a).This is a drawingof thethreedegree-of-freedomrevolutemanipulatorcurrently

beingdesignedattheMarsMissionResearchCenterat NorthCarolinaStateUniversity.

Y3

I *

II !

I d,..
I ** D

i Pl
m •

(a)

tlL

Z1

Y2

Zo

Xo

(b)

X1

Yo

Figure 16:DR106 robot

Figure 16(b)showshow thecoordinatesystemhasbeendefined.

presentedin Stanley[12] andcanberepresentedas

Thedynamicsareas

26

0 = M'IP- + M'1"i"

where

26 + 8C_3 + 29C_ + 24C2C 3 0 0]
M= 0 43+24C 3 8+12C 3J0 8 + 12C_ 8

[(16Cz_$23 + 24C2Sz_)01(02 + 03) + (24S2C_ + 58S2C2)t9_0:]

R. = _-(8Cz_Sz3 + 12S2Cz_ + 29S2C2)0 _ + 24S30203 + 12S30 _ - 20gC 2 - 6gCz3

[-(8C23S23 + 12S2C23)0_ -12S30_ - 6gC23

'r -. ,C2

(01}= 0 2

03

c_3= cos(e2+ 03)

S:3 = sin(02 + 03)

c: = cos(02)

c3 = cos(03)

S 2 = sin(02)

S 3 = sin(03)

27

Usingthesedynamicstheadaptivefuzzy logic controlleris appliedto eachjoint

separately.Thecouplingis treatedasanexternaldisturbance.If eachjoint startsat0rad

andthedesiredtrajectoryis apositiveunit stepfor joints oneandtwo anda negativeunit

stepfor joint threea timeresponselike thatin Figure 17occurs.Notice that)' neededto

beincreasedto achieveagoodresponse.

.

_" 1.5 _

=, oF
0 ..0.5.=.

-1.5-
0 1 2

-- JOINT 1

--- JOINT 2

i _ JOINT 3

3 4 5 6 7 8 9 10

TIME (seconds)

_.=0.5

7 =50.0

Figure 17: Response of the DR106 using the adaptive fuzzy logic controller

Figure 18 shows three cases where the inertia of the vertical pendulum is not

constant. The top graph shows the response for when the inertia changes from 2.0 to 0.5

at 3.0s. This would be similar to robotics applications in which different tools are

handled. The middle graph shows the response when the inertia is oscillating between

2.0 and 0.2 at 1Hz. This is the only case where),had to be varied to get a better response.

The last case shown is when the inertia is highly dependent on the angular position. This

type of situation could occur in non-symmetrical mechanisms.

75% step decmese It 3.0s

-2

0 81% chanoe at 11-_-1
-2

2

o __-1

-2
0 1 2 3 4 5 8 7 II g 10

TIME(Mconcl,)

28

Figure 18: Responses of systems having time varying inertias

One last example of a system having complex characteristics is the vertical

pendulum already mentioned but having a time lag between reading the system states and

the application of the control force. Since a similar system was tested by Stanley [12]

using a non-adaptive fuzzy logic controller, it would be interesting to see if an adaptive

fuzzy logic controller is any better. Figure 19 shows the response for several different

time lags measured by the number of time steps the application of the control force is

delayed.

a_/-1

-2 I

0 1 2 3 4 5 8 7 8 9 10
TIME (_nd_)

2

I I I

' t-2, I

2
I J

I J
f.2 ¸

2
UJ

-2'

o

d_w,, 0

1

I-

I AJ !,j

v,v- , v s u _l/_

1 2 3 4 s e 7 I a 10 0 1 2 3 4 S s 7' a o 10
TIME (mx:onds) TIME (_oonde)

ddw-2

ddw,, 4

d_w,, 10

29

Figure 19: Vertical pendulum having time delays

As can be seen, the system remains stable, although very slowly convergent, until a delay

of about ten time steps. When Stanley [12] did a similar test on a horizontal pendulum

the system became wildly oscillatory after a delay of three time steps. Therefore, the

adaptive fuzzy logic controller does behave better with a system having time delays than

a non-adaptive fuzzy logic controller.

CHAPTER V: CONCLUSION AND SUGGESTIONS FOR

FUTURE WORK

30

An adaptive fuzzy logic control algorithm in which the orientation of the defining

PD plane is varied on-line by a second fuzzy logic controller has been presented. The

adaptation routine used an estimate of the steady-state error having a forgetting factor and

a velocity penalty to alter the displacement of the PD plane. The technique was

demonstrated on a simple vertical pendulum and gave good results for wide variations in

k and 1,. The controller was also demonstrated on more complex systems such as a 3DOF

robotic manipulator, various time varying systems and systems with time delays.

The most obvious area in which future research could be done is to develop

algorithms which vary the other two parameters defining the PD plane. This would allow

the damping rate and frequency to be varied instead of just the steady-state error. The

most obvious changes in behavior should occur with systems having time varying

parameters and systems having time delays.

Another area open for consideration is using a different type of control surface to

define the rule-base. A PD plane was used because it is well known and simple. A

higher-order, linear surface could be used giving similar results for more inputs and/or

outputs. Another variation would be to use a non-planar surface. An example would be

using a surface whose cross-section is like a third-order polynomial to give a sort of dead-

zone. Another more complex configuration is a controller having multiple outputs which

are coupled. This could be used to either compensate for coupling in the inputs or to

introduce coupling into the overall system.

31

Onefinal suggestionis thatdifferentvariationmethodsbe investigated.There

mayvery well bea betterway to estimatethesteady-stateerror. In fact, thesteady-state

errormaynot bethebestperformancecharacteristicto measure.A moregeneralizing

changewouldbe to varytherule-baseby makingeitherlinearor non-linearcoordinate

transformationsinsteadof varyingtheparametersof thecontrolsurface.This would

allowchangesin theshapeof thecontrolsurfaceto bemadeon-line.

Thebasicconceptbeinginvestigatein this thesisis theuseof asimple

mathematicalrelationshipbasedonagraphicalrepresentationto definetherule-base.

Thus,parametersin thefunctiondefiningtherule-basecanbevariedadaptivelywhich, in

turn,changestheentirerule-basein asimplestep.The methodologydevelopedin this

thesiswasdonesoasto facilitatethepresentationof thisunderlyingidea. It shouldbe

kept in mind whenconsideringanyvariationsthat noattemptwasmadeat optimizingany

factors.

32

1. Slotine,S.J. andLi, W., "On theAdaptiveControlof RoboticManipulators",Int. J.
of Robotics Research, Vol. 6, No. 3, pp. 49-59, 1987.

2. Craig, J. J., Hsu, P., and Sastry, S., "Adaptive Control of Mechanical Manipulators",
Proc. of the IEEE Int'l Conf. on Robotics and Automation, San Francisco, 1986.

3. Zadeh, L. A., "Outline of a New Approach to the Analysis of Complex Systems and
Decision Processes", IEEE Trans. on Systems, Man and Cybernetics, Vol. SMC-3,pp. 28-44, 1975.

4. Chang, C. H., "Tuning fuzzy logic controllers via In ut and Output MappingFactors" M S " • • P
, . . Thesis, Umverslty of Oklahoma, 1989.

King, P. J. and Mamdani, E. H., "The Application of Fuzzy Control Systems to
Industrial Processes," Automatica, Vol. 13, pp. 235-242, 1977.

Murakami, S. and Maeda, M., "Automobile Speed Control System Using a fuzzy
logic controller", Industrial Applications of Fuzzy Control (M. Sugeno, Ed.), pp.105-123, North Holland, 1985.

Mamdani, E.H. and Assilian, S., "An Experiment in Linguistic Synthesis with a
fuzzy logic controller", Int. J. Man-Machine Studies, Vol. 7, pp. 1-13, 1975.

Scharf, E. M., Mandic, N. J., and Mamdani, E. H., "A Self-organizing Algorithm for
the Control of a Robot Arm", ISMM Conf. on Mini and Microcomputers and Their
Applications, San Antonio, 1983.

"Fuzzy Controller Robots and Its Practical Applications (Special Session)",
IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, Raleigh, 1992.

Noh, H., Kim, H., Kim, S., Park, M., "Cooperative Mobile Robots Using Fuzzy
Algorithm", Proc. of the 1992 IEEE/RSJ International Conf. on Intelligent Robots
and Systems, Raleigh, pp. 796-802, 1992.

Liu, M.H., "Robotic Deburring Based on Fuzzy Force Control", Proc. of the 1992

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Raleigh, pp. 782-789, 1992.

Stanley, R., Gerber, D., Windsor, J., and Lee, G. K. F., "A Fuzzy Controller for
Space Manipulator Systems", Conf. on Intelligent Robotic Systems for Space
Exploration", Troy, N. Y., 1992.

Kouathi, I. and Jones, B., "An Improved Design Procedure for Fuzzy Control
Systems", International Journal of Machine Tools and Manufacture: Design,
Research and Application, Vol. 31, No. 1, 1991, pp. 107-122.

°

.

.

o

o

10.

11.

12.

13.

14. Jager, R., Verbuiggen, H. B., Bru3)n, P. M., Krygsman, A. J., "Real-Time Fuzzy
Expert Control", IEEE, Vol. 2, No. 332, 1991, pp. 966-970.

33

15.

16.

17.

18.

19.

Chen,Y. Y. andJang,J. S., "Imitation of State Feedback Controllers by Fuzzy

Linguistic Control Rules", Proc. of the 29th Conf. on Decision and Control,
Honolulu, 1990.

Tzafestas, S. and Paparrikolopoulos, N. P., "Incremental Fuzzy Expert PID Control",
IEEE Trans. on Industrial Electronics, Vol. 37, No. 5, Oct. 1990, pp. 365-371.

Smith, S. M. and Corner, D. J., "Automated Calibration of a fuzzy logic controller

Using a Cell State Space Algorithm", IEEE Control Systems, August 1991, pp. 18-
28.

Acosta, G. G., Mayosky, M. A., Catalfo, J. M., "Fuzzy Logic and Pattern
Recognition in Self-Tuning Controller", IEEE/RSJ Int"l Conf. on Intelligent Robots
and Systems, Raleigh, 1992.

Zhang, B.S., Edmunds, J.M., "On Fuzzy Logic Controllers", IEE Control '91, No.
332, Vol. 2, pp. 961-965, 1991.

20. Kickert, W.J.M., and Mamdami, E.H., Fuzzy Sets Systems, Vol. 1, pp. 29-44, 1978.

APPENDICES

35

An important part of performing good research is ensuring that future researchers

can, if so desired, reproduce your results. Towards this end, the three appendices are

given. The results presented in this thesis came from many runs of various computer

programs. Although they varied in the system model, non-linearities introduced, and the

desired results, they have the same basic structure. Because of this a detailed description

of one of the programs can serve as a description of all the programs. The program

simulating the application of the adaptive fuzzy logic controller to a simple three-link,

revolute joint robot, Figure 16, will be the illustrative example. Appendix A gives a

detailed progression through the program while Appendix B gives the flow chart for the

same program. The actual C code used is listed in Appendix C.

All of the programming was done using Borland C/C++ version 3.1. Since an

effort was made to use only conventional commands, the code should work with other C

compilers with little or no modification. The structure and methodology were kept very

simple so the program should be easy to translate to a different programming language.

In fact, several sections were originally programmed in FORTRAN by Stanley [12].

36

I-II

III

IV

V

VI

VII

VIII

IX-X

XI

XII

MAIN PROGRAM

In these blocks the output files are opened, the state variables are set to their
starting values and other operating variables are set to their initial values.

The initial values of the adaptation variables are written to an output file. This is
done so that the time response of the variables can be plotted later.

The FUZZY LOGIC CONTROL routine is called to determine the control force
given the initial conditions and the initial control surface orientation. This is done
for each link separately.

The initial positions and the control force calculated in IV are written to an output
file. This is to facilitate a plotting of their time responses.

The RUNGA-KUTTA routine is called to determine the new state variables
given the old states and control forces.

The STEADY-STATE ERROR APPROXIMATION routine is called to

estimate the steady-state error based on the past response and given the new errors
in position and velocity. This is done for each link separately.

The ADAPTATION FUZZY LOGIC routine is called to determine the

necessary variation in the control surface orientation given the estimated steady-
state error. This is done to each link separately.

Calculate the new adaptation values and write them to an output file.

The FUZZY LOGIC CONTROL routine is called to determine the control force
given the new states and new control surface orientation. This is done for each
link separately.

Write the new positions and control forces to an output file. Loop back to VI and
repeat for NSTEP times.

XIII Upon completing the simulation close all output files.

37

FUZZY LOGIC CONTROL ROUTINE

I-II

III-IV

V

Given the link being operated, set E to the appropriate state variable. Using the
last value of E and the fast two equation on page 12 determine QE and QCEA.

Determine which membership functions of QE and QCEA will be effective.
Since, as mentioned on page 8, no more than four membership functions, for each,
will have non-zero values this can greatly reduce the number of rules evaluated

and thus speed-up the operation of the routine.

Set arrays used for holding the membership function values and the consequence
block values to zero. These are used so that when LV is performed the correct

values will be multiplied.

VI-LIV
Each rule is successively checked for the correct combination of effective

membership functions. If the correct combination exists the following blocks are

performed:

(a) Each rule corresponds to a unique point in the quantized phase plane
determined by the center values of its combination of membership
functions.

LV

LVI

LVII

(b) Determine the degree of membership of QE and QCEA to the fuzzy sets
given in the rule. The membership functions used here are a half-cycle of
a sine wave. This is the same operation discussed on page 5.

(c) To determine the result of the antecedent block using the logic AND

operation given by definition 0), page 8 is performed.

(d) Given the coordinates of the rule from (a), the adaptation variables, and

the defining equation of the control surface in Eq. (2) determine the value
of the control surface at the position of the rule.

Determine the quantized control effort using the approximate center of gravity
method introduced on page 10. This is simply a quotient in which the numerator
is the sum of the products of the result of the logic AND and the value of the
control surface for each rule. The denominator is the sum of the results of the

logic AND's. Those rules not evaluated in VI-LIV give no contribution due to V.

Write QE and QCEA to an output file so that a phase plot may be drawn.

Scale the result of LV using the method given by the last equation on page 12.

38

I-II

III

STEADY-STATE ERROR ESTIMATION ROUTINE

The weighted running sums of the position and velocity are updated after
determining for which link the routine was called. LAMBDA is also set
depending on the link to facilitate varying it independently if necessary.

Calculate the approximate steady-state error using Eq. (3).

FUZZY LOGIC ADAPTATION ROUTINE

I

II

III

IV

V-XI

Set the Max/Min values of the input and output.

Quantize the incoming approximate steady-state error given the limit from I.

Determine the membership functions with non-zero values. Unlike the FUZZY
LOGIC CONTROL routine, which has two inputs, there is a maximum of two
rules which will influence the output.

Zero the holding arrays as in the FUZZY LOGIC CONTROL routine.

Each rule is successively checked to determine if it is valid. Those that are will be
evaluated much the same way as in the FUZZY LOGIC CONTROL routine.

The major differences, though, are that since there is only one ipput the logic
AND is not used and that the rule-base is fixed.

XII-XIII
These blocks are comparable to those in the FUZZY LOGIC CONTROL

routine.

APPENDIX B: FLOW CHARTS

39

MAIN PROGRAM BLOCK

17

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

Open Files]
T

] Set Initial
[Conditions [

T

Write Adaptation[Values [

I Call FUZZY LOGIC
CONTROL routine

for each link

Write positions and [

resulting torques [
T

Call 4 th order RUNGA-
KU'ITA routine

Call STEADY-STATE
ERROR ESTIMATION

routine for each link

Call ADAPTATION
FUZZY LOGIC routine

for each link

[Calculate and limit
I new adaptation

values

Write new adaptationvalues

I Call FUZZY LOGIC
CONTROL routine

for each link

,

I Write positions andresulting torques For I = 1 to NSTEP
,, _ i iJ

ICloseall
I files I

0

II

III

FUZZY LOGIC CONTROL ROUTINE

Determine E and CEA /

from system state variables
depending on link

being operated

[Quantize E and CEA I

Determine which membership
functions will be used for

QE (quantized erro0

40

IV

V

VI

LIV

Determine which membership I

functions will be used for
QECA (quantized change in

error angle)

[Zero fuzzy variables [

Determine
membership

values

Calculate

consequence
block result

RULE 49

and CELP Set rule
coordinates

Determine

membership
values

Calculate

consequence
block result

LV

LVI

LVII

Approximate Center Iof Gravity Method

I Write QE and QECA]for phase plot

! I

41

STEADY-STATE ERROR ESTIMATION ROUTINE

Determine Position and
Velocity errors from state

variables depending on
the link being operated

t

Calculate weightedrunning sums

Calculate approximatesteady-state error

FUZZY LOGIC ADAPTATION ROUTINE

42

Set input and
output limits

I Quandze the approximatesteady-state error

Determine which
membership functions

will be used

I _rofu_a_I

Determine membership
value _'_l Set consequence

block value I [

i

RULE

Approximate Center
I

of Gravity Method ,

I Scale quantizexl variation Iin adaptation variable

[RETURN]

Determinevaluemembership _.._[
Set consequence

block value

APPENDIX C: PROGRAM LISTING

PURPOSE:

AUTHOR:

To apply an adaptive Fuzzy-Logic controller to a three-link
microbot. (Highly Non-linear Coupled Second Order

Differential Equations). The control plane is defined by
the displacement along the QE-axis (D), the rotation in the

QE-QCEA plane (THETA), and its inclination from the QE-
QCEA plane (PHI). D is varied adaptively based upon an
approximation of the steady-state error.

Darrell L. Gerber

DATE: 4/21/93

VARIABLES:

T#:
Td#:
TRIG:

NEQ:
NSTEP:
DT:
TIME:

X[_]:
MAX#:
D#:

COUNT: Holds the value of the present Runga-Kutta
iteration.

The input to link #

The desired position (Theta desired)for joint #
Zero on the fh'st pass and One afterwards
Number of state equations

Number of times Runga-Kutta subroutine is called
Time interval delta T
Independent variable
Dependent state variables

Maximum input a/lowed in link #
D for link #

THETA#: THETA for link #
PHI#: PHI for link #

LASTE#: Error for link # during the previous iteration
ERROR_SUM#: Weighted running sum of the error for link #

VELSQ_ERROR_SUM#: Weighted running sum of the velocity
error squared for link #

dD: Change in D as determined by the adaptation routine
SSE#: Approximate Steady-State Error for link #
L#: Link #

,/

#define NEQ 9
#define DT 0.01

#define NSTEP 1000
#define Tdl 1.0
#define Td2 1.0
#define Td3 - 1.0

#define PI 3.141592654

/* Define Desired Positions */

#include <stdio.h>
#include <math.h>
#include <mem.h>
#include <stdlib.h>

double LASTE1 = 0.0,LASTE2 = 0.0,LASTE3 = 0.0;

44

doubleERROR_SUM1= 0.0,ERROR_SUM2= 0.0,ERROR_SUM3= 0.0;
doubleVELSQ_ERROR_SUM1= 0.0,VELSQ_ERROR_SUM2=
0.0,VELSQ_ERROR_SUM3= 0.0;
int TRIG = 0;

45

void Right(double[NEQ+l],double *,double*,double*,double*,double*,double
,double,double*,double*,double*,double*);

void State(double[NEQ+l],double [NEQ+l],double *,double*,double*);
void Runga(double[NEQ+l],double *,double*,double*,double*);
void Steady_State_Error(double[NEQ+l],int *,double*);
void Adaptation(double*,double*);
void Fuzzy_Logic(double[NEQ+l],double *,double*,int *,double*,double*,double

*,FILE *,FILE *,FILE *);

main()
(

double X[NEQ+ 1],TIME,T 1,T2,T3,MAX 1,MAX2,MAX3;
double D 1,D2,D3,THETA 1,THETA2,THETA3,PHI 1,PHI2,PHI3,SSE 1,S SE2,

SSE3,dD;
int COUNT,L1 =l,L2=2,L3=3;

FILE *file 1,*file2,*file3,*file4,*file5;

if ((file l=fopen("C:/GERBER/data/fROB 1.dat","w"))--NULL) printf("Error opening
filel_");

if ((file2=fopen("C:/GERBER/data/fROB 11.dat","w"))==NULL) printf("Error opening
file2X,n");

• It I| II II ----if ((file3=fopen(C:/GERBER/data/fROB 12.dat , w))--NULL) printf("Error opening

file3_");
if ((file4=fopen("C:/GERBER/data/fROB 13.dat","w"))==NULL) printf("Error opening

file4ha");
if ((file5=fopen("C:/GERBER/data/fROB ld.dat","w"))==NULL) printf("Error opening

file5kn");

TIME = 0.0;

X[1] = 0.0;
X[2] = -1.0;
X[3] = 0.0;
X[4] = 0.0;
X[5] = -1.0;
X[6] = 0.0;
X[7] = 0.0;
X[8] = 1.0;
X[9] = 0.0;

MAX1 = 500.0;
MAX2 -- 500.0;
MAX3 = 150.0;

/* Initial Conditions */

/* Set Input Limits */

46

D 1= D2 = D3 = 0.0; /* Initial Conditions of the control planes
THETA 1 = THETA2 = THETA3 = PI/4;
PHI 1 = PHI2 = PHI3 = PI/4;

fprintf(file5,"%f %f %f_n",D 1,D2,D3);

*/

/* Determine Control Efforts */

Fuzzy_Logic(X,&TI,&MAXI,&LI,&DI,&THETAI,&PHII,file2,f'tle3,file4);
Fuzzy_Logic(X,&T2,&MAX2,&L2,&D2,&THETA2,&PHI2,file2,f'de3,file4);
Fuzzy_Logic(X,&T3,&MAX3,&L3,&D3,&THETA3,&PHI3,file2,f'de3,file4);
TRIG = 1;

fprintf(filel,"%f %f %Ikn",X[2]+Tdl,X[5]+Td2,X[8]+Td3);

for(COUNT= 1;COUNT<=NSTEP;COUNT++)
{

Runga(X,&TIME,&TI,&T2,&T3);
S teady_State_Error(X,&L 1,&SSE 1);
S teady_State_Error(X,&L2,&SSE2);
Steady State_Error(X,&L3,&SSE3);
Adaptation(&S SE 1,&dD);
Adaptation(&SSE2,&dD);
Adaptation(&S SE3,&dD);
D1 =D1 +dD;
D2 = D2 + dD;
D3 = D3 + dD;

if(D 1>=20.0) D 1 = 20.0;
if(D 1<=-20.0) D 1 = -20.0;
if(D2>=20.0) D2 = 20.0;
if(D2<=-20.0) D2 = -20.0;
if(D3>=20.0) D3 = 20.0;
if(D3<=-20.0) D3 = -20.0;

/* Calculate New States */

/* Approximate SSE's */

/* Calculate Variations in D's */

/* Calculate new D's */

/* Limit D's */

fprintf(file5,"%f %f %tNn",D1,D2,D3);

/* Determine Control Efforts */

Fuzzy_Logic(X,&T1 ,&MAX 1,&L 1,&D 1,&THETAl,&PHIl,file3,f'fle4,file5);
Fuzzy_Logic (X,&T2,&MAX2,&L2,&D2,&THETA2,&PHI2,file3,f'fle4,file 5);
Fuzzy_Logic(X,&T3,&MAX3,&L3,&D3,&THETA3,&PHI3,file3,f'fle4,file5);

fprinff(file 1,"%f %f %t_",X[2]+Td 1,X[5]+Td2,X[8]+Td3);

fcloseall0;

return0;

/*

,/

47

PURPOSE: To calculate the mass matrix entries and the
nonlinear contributions.

AUTHOR: Robert 1. Stanley 17

DATE: 8/5/92

TRANSLATION: Darrell L. Gerber

DATE: 1/13/93

VARIABLES: R#:
G:
DET:

The nonlinear terms of link #
Gravity

The determinant of the mass matrix divided by M11

void Right(double X[NEQ+l],double *Rl,double *R2,double *R3,double *M11,double

*M22,double *M33,double *M23, double *DET, double *Tl,double *T2,double *T3){

double G,C23,$23,C2,C3,$2;

double $3,C23S23,C2S23,$2C23,$2C2;

G =9.81;

C23=cos(X[5]+Td2+X[8] +Td3);
S23=sin(X[5]+Td2+X[8]+Td3);
C2=cos(X[5]+Td2);
C3=cos(X[8]+Td3);
S2=sin(X[5]+Td2);
S3=sin(X[8]+Td3);
C23S23=C23"$23;
C2S23=C2"$23;
$2C23=$2"C23;
$2C2=$2"C2;

*M11 =26.0+8.0"C23"C23+29.0"C2"C2+24.0,C2,C23;
*M22=43.0+24.0"C3;
*M23=8.0+12.0"C3;
*M33=8.0;

*DET=*M22*(*M33)-*M23*(*M23);

*R 1=(16.0*C23S23+24.0*C2S23)*X[3],(X[6]+X[9])+(24.0,S2C23+58.0,S2C2),X[3],
X[6]+*T1;

*R2 (8 0"C23S23+12 0"$2C23+12 0"C2S23+29 0"$2 * * •=" " " • • C2) X[3] X[3]+24.0 $3
*X[6]*X[9]+ 12.0*S3*X[9]*X[9]-20.0*G*C2_6.0,G,C23+,T2;

*R3=-(8.0"C23S23+ 12.0*C2S23)*X[3]*X[3]_ 12.0"S 3*X[6]*X[6]-6.0*G*C23+*T3;

}

PURPOSE:

AUTHOR:

DATE:

To compute the present state of the dynamic system.

Robert J. Stanley II

8/5/92

TRANSLATION: Darrell L. Gerber

DATE: 1/13/93

VARIABLES:Y: System states
F: States in Runga-Kutta format

48

,/

void State (double F[NEQ+ 1],double Y[NEQ+ 1],double *Tl,double *T2,double *T3)

{

double R 1,R2,R3,M 11 ,M22,M33,M23,DET;

Right(Y,&R 1 ,&R2,&R3,&M 11,&M22,&M33,&M23,&DET,T1,T2,T3);

F[1]=Y[2]; /* Define state variables */

F[2]=Y[3];
F[3]=R1/M11;
F[4]=Y[5];
F[5]=Y[6];
F[6] =(R2*M33/DET)-(R3*M23/DET);
F[7]=Y[8];
F[8]=Y[9];
F[9] =-(R2*M23/DET)+(R3*M22/DET);

/_k

PURPOSE:

AUTHOR:

DATE:

Use a Fourth-Order Runga-Kutta routine to calculate
the next state vector.

Robert J. Stanley II

8/5/92

TRANSLATION: Darrell L. Gerber

DATE: 1/13/93

VARIABLES:G#: Variable Gains

49

./

void Runga(double X[NEQ+l],double *TIME,double *Tl,double *T2,double *T3)
{

double Y[NEQ+ 1],F[NEQ+ 1],G 1[NEQ+ 1],G2[NEQ+ 1],G3 [NEQ+ 1],G4[NEQ+ 1];
int I;

for(I=I;I<=NEQ;I++) Y[I] = X[I];

State(F,Y,T1,T2,T3);
for(I= 1;I<=NEQ;I++) G1 [I]=DT*F[I];
*TIME=*TIME+DT/2.0;
for(I=l ;I<=NEQ;I++) Y[I]=X[1]+G 1[1]/2.0;
State(F,Y,T1,T2,T3);
for(I= 1;I<=NEQ;I++)
{

G2[1-]=DT*F[I];
Y[1]=X[I]+G2[I]]2.0;

}
State(F,Y,T1,T2,T3);
for(I= 1;I<=NEQ;I++)

{
G3[I]=DT*F[I];
Y[I]=X[II+G3[I];

}
*TIME=*TIME+DT/2.0;

State(F,Y,T1,T2,T3);
for(I= 1;I<=NEQ;I++) G4[I]=DT*F[I];
for(I= 1;I<=NEQ;I++) X[I]=X[I]+(G1 [I]+2.0*(G2[I]+G3[I])+G4[I])/6.0;

*/

/*

PURPOSE: Given a position calculate the torque required to
drive the error to zero using a Fuzzy-Logic Control
surface approximating a PD-plane as defined by the
displacement along the QE-axis (D), the rotation in the
QE-QCEA plane (THETA), and the inclination from the
QE-QCEA plane (PHI).

AUTHOR: Darrell L. Gerber

DATE: 4/21/93

VARIABLES:E: Error

CEA: Change in error angle
LASTE#: The last error in link #
PI: 3.14159

QE: Quantized value of the error

QECA: Quantized value of the error change
u: Membership function value
UU: Universe of discourse value

NUM: Numerator of the input value
DEN: Denominator of the input value

Ye: Temp variable for the error membership function
Yec: Temp variable for the change in error

membership function
INPUT: The quantized input to the plant
TORQUE: The actual input to the plant
N: The number of rules
I: Count variable

ELP: Linguistic value Error Large Positive
EMP: Lingmsuc value Error Medium Positive
ESP: Lingmstlc value Error Small Positive
EZE: Linguistic value Error Zero

ESN: Lingmsuc value Error Small Negative
EMN: Lingmstlc value Error Medium Negative
ELN: Lingmsuc value Error Large Negative
CELP: Lingmst_c value Change m Error Large Positive
CEMP: Lingmstlc value Change m Error Medium Positive
CESP: Lingmstlc value Change m Error Small Positive
CEZE: Lingmstac value Change m Error Zero
CESN: Lingmstac value Change m Error Small Negative
CEMN:Lingmstlc value Change m Error Medium Negative
CELN: Lingmstac value Change m Error Large Negative
X: Position of the rule along the QE-axis
Y: Position of the rule along the QECA-axis
XX: System States

TOR_MAX: Max/Min allowed torque
LINK: Link being maneuvered

50

void Fuzzy_Logic(doubleXX[NEQ+l],double *TORQUE,double*TOR_MAX,int
*LINK,double *D,double*THETA,double*PHI,FILE *file3,FILE *f'fle4,FILE *file5)
{

double X,Y,E,QE,u[50],UU[50],NUM=0.0,DEN=0.0;
double Ye,Yec,INPUT,CEA,QECA;

int N,I;
int ELP--0,EMP=0,ESP--0,EZE--0,ES N---0,EMN--0,ELN=0;
int CELP_--0,CEMP=0,CESP--0,CEZE=0,CESN--0,CEMN--0,CELN-=0;

51

N=49;

switch(*LiNK)

{
case 1: /* E and CEA if link 1

E=XX[2];
if(!TRIG) CEA=0.0;
else CEA=atan2fE-LASTE 1,0.01);
LASTEI=E;

break;

,/

case 2: /* E and CEA if link 2 */

E=XX[5];
if(tTRIG) CEA=0.0;
else CEA=atan2(E-LASTE2,0.01);
LASTE2=E;
break;

case 3: /* E and CEA if link 3 */

E=XX[8];
if(!TRIG) CEA--0.0;
else CEA=atan2(E-LASTE3,0.01);
LASTE3=E;

break;

default:

printf("Error In LINK Xn");

QE=E*(6/(PI/3)); /* Quantize E and CEA */

QECA = CEA*(6/(PI/2.0));

if(QE>=6.0) /* Determine which linguistic values
{ /* are applicable for quantized error

QE = 6.0;
ELP = 1;

if((QE>--4.0)&&(QE<6.0)) ELP=EMP=I;
if((QE>=2.0)&&(QE<4.0)) EMP=ESP=I;
if((QE>=0.0)&&(QE<2.0)) ESP=EZE=I;

,/
,/

if((QE>=-2.0)&&(QE<0.0)) EZE=ESN=I;
if((QE>=-4.0)&&(QE<-2.0)) ESN=EMN=I;
if((QE>-6.0)&&(QE<-4.0)) EMN=ELN=I;
if(QE<=-6.0)
{

QE = -6.0;
ELN = 1;

]

52

if(QECA>=6.0)
{

QECA = 6.0; /* in error angle
CELP = 1;

}
if((QECA>=4.0)&&(QECA<6.0)) CELP=CEMP=I;
if((QECA>=2.0)&&(QECA<4.0)) CEMP=CESP= 1;
if((QECA>=0.0)&&(QECA<2.0)) CESP=CEZE=I;
if((QECA>=-2.0)&&(QECA<0.0)) CEZE=CESN=I;
if((QECA>=-4.0)&&(QECA<-2.0)) CESN=CEMN=I;
if((QECA>-6.0)&&(QECA<-4.0)) CEMN=CELN=I;
if(QECA<=-6.0)
{

QECA = -6.0;
CELN = 1;

}

/* Determine which linguistic values */
/* are applicable for quantized change */

*/

for(I=0;I<=N;I++) u[I]=UU[I]=0.0; /* Initialize membership function */
/* value and universe of discourse */
/* value */

/*** Rules for D--0.0, THETA=PHI=PI/4.0 ***/

if(ELP&&CELN)
{

/* Rule 1: If ELP and CELN then */
/* contribution is ZE */

X = 6.0;
Y = -6.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA+8.0));
u[1] = min(Ye,Yec);
UU[1] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[1]>6.0) UU[1] = 6.0;
if(UU[1]<-6.0) UU[1] = -6.0;

if(ELP&&CEMN) /* Rule 2:
{ /*

X = 6.0;

If ELP and CEMN then */
contribution is SN */

53

Y = -4.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA+6.0));
u[2] = min(Ye,Yec);
UU[2] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y + D*tan(*PHI)/tan(*THETA);
if(UU[2]>6.0) UU[2] = 6.0;
if(UU[2]<-6.0) UU[2] = -6.0;

if(ELP&&CESN)
{

/* Rule 3: IfELP and CESN then */
/* contribution is MN */

X = 6.0;
Y = -2.0;
Ye -- sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA+4.0));
u[3] = min(Ye,Yec);
UU[3] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[3]>6.0) UU[3] = 6.0;
if(UU[3]<-6.0) UU[3] = -6.0;

if(ELP&&CEZE)
{

X = 6.0;
Y = 0.0;
Ye = sin(PI/4*(QE-4.0));

/* Rule 4: If ELP and CEZE then */
/* contribution is LN */

Yec = sin(PI/4*(QECA+2.0));
u[4] = min(Ye,Yec);
UU[4] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);

if(UU[4]>6.0) UU[4] = 6.0;
if(UU[4]<-6.0) UU[4] = -6.0;

if(ELP&&CESP)
{

/* Rule 5: If ELP and CESP then */
/* contribution is LN */

X -- 6.0;
Y = 2.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA-0.0));
u[5] = min(Ye,Yec);
UU[5] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[5]>6.0) UU[5] = 6.0;
if(UU[5]<-6.0) UU[5] = -6.0;

if(ELP&&CEMP)
{

X = 6.0;
Y = 4.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA-2.0));
u[6] = min(Ye,Yec);

/* Rule 6: If ELP and CEMP then */
/* contribution is LN */

54

UU[6] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[6]>6.0) UU[6] = 6.0;
if(UU[6]<-6.0) UU[6] = -6.0;

iffELP&&CELP)
{

/* Rule 7: If ELP and CELP then */
/* contribution is LN */

X =6.0;
Y -- 6.0;
Ye = sin(PI/4*(QE-4.0));
Yec = sin(PI/4*(QECA-4.0));
u[7] = min(Ye,Yec);
UU[7] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[7]>6.0) UU[7] = 6.0;
if(UU[7]<-6.0) UU[7] = -6.0;

if(EMP&&CELN)
{

X = 4.0;

Y = -6.0;
Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+8.0));

/* Rule 8: If EMP and CELN then */
/* contribution is SP */

u[8] = min(Ye,Yec);
UU[8] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[8]>6.0) UU[8] = 6.0;
if(UU[8]<-6.0) UU[8] = -6.0;

if(EMP&&CEMN)
{

/* Rule 9: If EMP and CEMN then */
/* contribution is ZE */

X = 4.0;
Y = -4.0;
Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+6.0));
u[9] = min(Ye,Yec);
UU[9] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +*D*tan(*PHI)/tan(*THETA);
if(UU[9]>6.0) UU[9] = 6.0;
if(UU[9]<-6.0) UU[9] -- -6.0;

if(EMP&&CESN)
{

/* Rule 10: If EMP and CESN then */
/* contribution is SN */

X = 4.0;
Y = -2.0;
Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+4.0));

u[10] = min(Ye,Yec);
UU[10] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan (*THETA);

if(UU[10]>6.0) UU[10] = 6.0;
if(UU[10]<-6.0) UU[10] = -6.0;

55

if(EMP&&CEZE)
{

X = 4.0;
Y = 0.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+2.0));
u[11] = min(Ye,Yec);

/* Rule 11: If EMP and CEZE then */
/* contribution is MN */

UU[11] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if0JU[11]>6.0) UU[11] = 6.0;
if(UU[11]<-6.0) UU[11] = -6.0;

if(EMP&&CESP)
{

/* Rule 12: IfEMP and CESP then */
/* contribution is LN */

X = 4.0;
Y = 2.0;
Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA+0.0));
u[12] = min(Ye,Yec);

UU[12] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[12]>6.0) UU[12] = 6.0;
if(UU[12] <-6.0) UU[12] = -6.0;

if(EMP&&CEMP)
{

X = 4.0;
Y = 4.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA-2.0));
u[13] = min(Ye,Yec);

UU[13] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[13]>6.0) UU[13] = 6.0;
if(UU[13]<-6.0) UU[13] = -6.0;

/* Rule 13: IfEMP and CEMP then */
/* contribution is LN */

if(EMP&&CELP)
{

X = 4.0;
Y = 6.0;

Ye = sin(PI/4*(QE-2.0));
Yec = sin(PI/4*(QECA-4.0));
u[14] = min(Ye,Yec);

UU[14] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[14]>6.0) UU[14] = 6.0;
if(UU[14] <-6.0) UU[14] = -6.0;

/* Rule 14: IfEMPand CELP then */
/* contribution is LN */

56

if(ESP&&CELN)
{

/* Rule 15: IfESP and CELN then */
/* contribution is MP */

X = 2.0;
Y = -6.0;
Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI/4*(QECA+8.0));
u[15] = min(Ye,Yec);
UU[15] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);

if(UU[15]>6.0) UU[15] = 6.0;
if(UU[15]<-6.0) UU[15] = -6.0;

if('ESP&&CEMN)
{

X = 2.0;
Y = -4.0;
Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI/4*(QECA+6.0));
u[16] = min(Ye,Yec);

/* Rule 16: IfESP and CEMN then */
/* contribution is SP */

UU[16] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[16]>6.0) UU[16] = 6.0;
if(UU[16]<-6.0) UU[16] = -6.0;

if(ESP&&CESN)
{

/* Rule 17: IfESP and CESN then */
/* contribution is ZE */

X = 2.0;
Y = -2.0;
Ye = sin(PI/4*(QE-0.0));
Yec -- sin(PI/4*(QECA+4.0));
u[17] = min(Ye,Yec);
UU[17] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[17]>6.0) UU[17] = 6.0;
if(UU[17]<-6.0) UU[17] = -6.0;

if(ESP&&CEZE)
{

X = 2.0;
Y = 0.0;
Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI]4*(QECA+2.0));
u[18] = min(Ye,Yec);
UU[18] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);

if(UU[18]>6.0) UU[18] = 6.0;
if(UU[18]<-6.0) UU[18] = -6.0;

/* Rule 18: IfESP and CEZE then */
/* contribution is SN */

if(ESP&&CESP)
{

X = 2.0;
Y = 2.0;
Ye = sin(PI/4*(QE-0.0));
Yec = sin(PI/4*(QECA+0.0));
u[19] = min(Ye,Yee);

/* Rule 19: IfESP and CESP then */
/* contribution is MN */

UU[19] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[19]>6.0) UU[19] = 6.0;
if(UU[19]<-6.0) UU[19] = -6.0;

57

if(ESP&&CEMP)

{
/* Rule 20: If ESP and CEMP then */
/* contribution is LN */

X = 2.0;
Y = 4.0;
Ye = sin(Pl/4*(QE-0.0));
Yec = sin(PI/4*(QECA-2.0));
u[20] = min(Ye,Yec);
UU[20] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[20]>6.0) UU[20] = 6.0;
if(UU[20]<-6.0) UU[20] = -6.0;

if(ESP&&CELP)
{

X = 2.0;
Y = 6.0;
Ye = sin(PI/4*(QE-0.0));
Yec = sin(PId4*(QECA-4.0));
u[21] = min(Ye,Yec);

/* Rule 21: IfESP and CELP then */
/* contribution is LN */

UU[21] =-tan(*PH/)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[21]>6.0) UU[21] = 6.0;
if(UU[21]<-6.0) UU[21] = -6.0;

if(EZE&&CELN)
{

X = 0.0;
Y = -6.0;
Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+8.0));
u[22] = min(Ye,Yec);
UU[22] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);

/* Rule 22: If EZE and CELN then */
/* contribution is LP */

58

if(UU[22]>6.0) UU[22] = 6.0;
if(UU[22]<-6.0) UU[22] = -6.0;

if(EZE&&CEMN)
{

/* Rule 23: IfEZE and CEMN then */
/* contribution is MP */

X = 0.0;
Y = -4.0;
Ye = sin(Pl/4*(QE+2.0));
Yec = sin(PI/4*(QECA+6.0));
u[23] = min(Ye,Yec);
UU[23] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[23]>6.0) UU[23] = 6.0;
if(UU[23]<-6.0) UU[23] = -6.0;

if(EZE&&CESN)
{

/* Rule 24: If EZE and CESN then */
/* contribution is SP */

X -- 0.0;
Y = -2.0;
Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+4.0));
u [24] = min(Ye,Yec);

UU[24] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[24]>6.0) UU[24] = 6.0;
if(UU[24]<-6.0) UU[24] = -6.0;

if(EZE&&CEZE)
{

/* Rule 25: If EZE and CEZE then */
/* contribution is ZE */

X = 0.0;
Y = 0.0;
Ye = sin(Pl/4*(QE+2.0));
Yec = sin(PI/4*(QECA+2.0));
u[25] = min(Ye,Yec);

UU[25] = -tan(*PHI)*X/tan(*THETA) - tan(*PH/)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[25]>6.0) UU[25] = 6.0;
if(UU[25]<-6.0) UU[25] = -6.0;

if(EZE&&CESP)
{

X = 0.0;
Y = 2.0;
Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA+0.0));
u[26] = min(Ye,Yec);

UU[26] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan (*THETA);

/* Rule 26: If EZE and CESP then */
/* contribution is SN */

59

if(UU[26]>6.0) UU[26] = 6.0;
if(UU[26]<-6.0) UU[26] = -6.0;

if(EZI_&&CEMP)
{

/* Rule 27: If EZE and CEMN then */
/* contribution is MN */

X -- 0.0;
Y = 4.0;
Ye = sin(Pl/4*(QE+2.0));
Yec = sin(PI/4*(QECA-2.0));
u[27] = min(Ye,Yec);
UU[27] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[27]>6.0) UU[27] = 6.0;
if(UU[27]<-6.0) UU[27] = -6.0;

if(EZE&&CELP)
{

/* Rule 28: IfEZE and CELP then */
/* contribution is LN */

X = 0.0;
Y = 6.0;
Ye = sin(PI/4*(QE+2.0));
Yec = sin(PI/4*(QECA-4.0));
u[28] = min(Ye,Yec);
UU[28] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[28]>6.0) UU[28] = 6.0;
if(UU[28]<-6.0) UU[28] = -6.0;

if(ESN&&CELN)
{

/* Rule 29: If ESN and CELN then */
/* contribution is LP */

X = -2.0;
Y = -6.0;
Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+8.0));
u[29] = min(Ye,Yec);
UU[29] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[29]>6.0) UU[29] = 6.0;
if(UU[29]<-6.0) UU[29] = -6.0;

if(ESN&&CEMN)
{

X = -2.0;
Y = -4.0;
Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+6.0));
u[30] = min(Ye,Yec);
UU[30] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan (*THETA);

/* Rule 30: If ESN and CEMN then */
/* contribution is LP */

if(UU[30]>6.0) UU[30] = 6.0;
if(UU[30]<-6.0) UU[30] = -6.0;

60

if(ESN&&CESN)
{

/* Rule 31: If ESN and CESN then */
/* contribution is MP */

X = -2.0;
Y = -2.0;

Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+4.0));
u[31] = min(Ye,Yec);

UU[31] =-tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[31]>6.0) UU[31] = 6.0;
if(UU[31]<-6.0) UU[31] = -6.0;

if(ESN&&CEZE)
{

/* Rule 32: If ESN and CEZE then */
/* contribution is SP */

X = -2.0;
Y = 0.0;
Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+2.0));
u[32] = min(Ye,Yec);

UU[32] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[32]>6.0) UU[32] = 6.0;
ifCu-U[32]<-6.0) UU[32] = -6.0;

if(ESN&&CESP)
{

/* Rule 33: IfESN and CESP then */
/* contribution is ZE */

X = -2.0;
Y = 2.0;
Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA+0.0));
u[33] = min(Ye,Yec);

UU[33] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[33]>6.0) UU[33] = 6.0;
if(UU[33]<-6.0) UU[33] = -6.0;

if(ESN&&CEMP)
{

X = -2.0;
Y = 4.0;

Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA-2.0));
u[34] = min(Ye,Yec);

UU[34] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

/* Rule 34: If ESN and CEMP then */
/* contribution is SN */

61

if(UU[34]>6.0) UU[34] = 6.0;
if(UU[34]<-6.0) UU[34] = -6.0;

if(ESN&&CELP)
{

/* Rule 35: If ESN and CELP then */
/* contribution is MN */

X = -2.0;
Y = 6.0;
Ye = sin(PI/4*(QE+4.0));
Yec = sin(PI/4*(QECA-4.0));
u[35] = min(Ye,Yec);
UU[35] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[35]>6.0) UU[35] = 6.0;
if(UU[35]<-6.0) UU[35] = -6.0;

if(EMN&&CELN)
{

X = -4.0;
Y = -6.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+8.0));
u[36] = min(Ye,Yec);

UU[36] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan (*THETA);

if(UU[36]>6.0) UU[36] = 6.0;
if(UU[36]<-6.0) UU[36] = -6.0;

/* Rule 36: If EMN and CELN then */
/* contribution is LP */

if(EMN&&CEMN)
{

X = -4.0;
Y = -4.0;
Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+6.0));
u[37] = min(Ye,Yec);
UU[37] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[37]>6.0) UU[37] = 6.0;
if(UU[37]<-6.0) UU[37] = -6.0;

/* Rule 37: If EMN and CEMN then*/
/* contribution is LP */

if(EMN&&CESN)
{

X = -4.0;
Y = -2.0;
Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA+4.0));
u[38] = min(Ye,Yec);
UU[38] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);

/* Rule 38: IfEMN and CESN then */
/* contribution is LP */

if(UU[38]>6.0) UU[38] = 6.0;
if(LrU[38]<-6.0)UU[38] = -6.0;

62

iffEMN&&CEZE)
{

X = -4.0;
Y = 0.0;

Ye = sin(PI/4*(QE+6.0));
Yec - sin(PI/4*(QECA+2.0));
u[39] = min(Ye,Yec);

UU[39] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D'tan (*PHI)/tan (*THETA);

if(UU[39]>6.0) UU[39] = 6.0;
if(UU[39]<-6.0) UU[39] = -6.0;

/* Rule 39: If EMN and CEZE then
/* contribution is MP */

*/

if(EMN&&CESP)
{

X = -4.0;
Y = 2.0;

Ye = sin(PI/4*(QE+6.0));

Yec = sin(PI/4*(QECA+0.0));
u[40] = min(Ye,Yec);

UU[40] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[40]>6.0) UU[40] = 6.0;
if(UU[40]<-6.0) UU[40] = -6.0;

/* Rule 40: If EMN and CESP then */
/* contribution is SP */

if(EMN&&CEMP)
{

X = -4.0;
Y = 4.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA-2.0));
u[41] = min(Ye,Yec);

UU[41] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[41]>6.0) UU[41] = 6.0;
if(UU[41]<-6.0) 1513141] = -6.0;

/* Rule 41: IfEMN and CEMP then*/
/* contribution is ZE */

if(EMN&&CELP)
{

X = -4.0;
Y = 6.0;

Ye = sin(PI/4*(QE+6.0));
Yec = sin(PI/4*(QECA-4.0));
u[42] = min(Ye,Yec);

UU[42] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan (*THETA);

/* Rule 42: IfEMN and CELP then */
/* contribution is SN */

63

if(UU[42]>6.0) UU[42] = 6.0;
if(UU[42]<-6.0) UU[42] = -6.0;

if(ELN&&CELN)
{

/* Rule 43: If ELN and CELN then */
/* contribution is LP */

X = -6.0;
Y = -6.0;
Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA+8.0));
u[43] = min(Ye,Yec);
UU[43] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[43]>6.0) UU[43] = 6.0;
if(UU[43]<-6.0) UU[43] = -6.0;

if(ELN&&CEMN)
{

X = -6.0;
Y = -4.0;
Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA+6.0));
u[44] = min(Ye,Yec);
UU[44] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[44]>6.0) UU[44] = 6.0;
if(UU[44]<-6.0) UU[44] = -6.0;

/* Rule 44: If ELN and CEMN then */
/* contribution is LP */

if(ELN&&CESN)
{

/* Rule 45: IfELN and CESN then */
/* contribution is LP */

X = -6.0;
Y = -2.0;
Ye = sin(Pl/4*(QE+8.0));
Yec = sin(PI/4*(QECA+4.0));
u[45] = min(Ye,Yec);

UU[45] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +
*D*tan(*PHI)/tan(*THETA);

if(UU[45]>6.0) UU[45] = 6.0;
if(UU[45]<-6.0) UU[45] = -6.0;

if(ELN&&CEZE)
{

X = -6.0;
Y -- 0.0;

Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA+2.0));
u[46] = min(Ye,Yec);
UU[46] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);

/* Rule 46: If ELN and CEZE then */
/* contribution is LP */

64

if(UU[46]>6.0) UU[46] = 6.0;
if(UU[461<-6.0)UU[46] = -6.0;

if(ELN&&CESP)
{

/* Rule 47: IfELN and CESP then */
/* contribution is MP */

X = -6.0;
Y = 2.0;
Ye = sinfPI/4*(QE+8.0));
Yec = sin(PI/4*(QECA-0.0));
u[47] = min(Ye,Yec);
UU[47] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[47]>6.0) UU[47] = 6.0;
if(UU[47]<-6.0) UU[47] = -6.0;

if(ELN&&CEMP)
{

/* Rule 48: If ELN and CEMP then */
/* contribution is SP */

X = -6.0;
Y = 4.0;
Ye = sin(PI/4*(QE+8.0));
Yec = sin(PI/4*(QECA-2.0));
u[48] = min(Ye,Yec);
UU[48] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[48]>6.0) UU[48] = 6.0;
if(UU[48]<-6.0) UU[48] = -6.0;

if(ELN&&CELP)
{

/* Rule 49: If ELN and CELP then */
/* contribution is ZE */

X = -6.0;
Y = 6.O;
Ye = sin(PI/4*(QE+8.0));
Yec -- sin(PI/4*(QECA-4.0));
u[49] = min(Ye,Yec);
UU[49] = -tan(*PHI)*X/tan(*THETA) - tan(*PHI)*Y +

*D*tan(*PHI)/tan(*THETA);
if(UU[49]>6.0) UU[49] = 6.0;
if(UU[49]<-6.0) UU[49] = -6.0;

for(I= 1;I<=N;I++)
{

NUM = NUM+u[I]*UU[I];
DEN = DEN+u[I];

/* Quantized input using approximate */
/* center of gravity method */

if((DEN<=0.0001)&&(DEN>---0.0)) DEN = 0.0001;/* Division by zero protection */
if((DEN>=-0.0001)&&(DEN<0.0)) DEN = -0.0001;

INPUT = NUM/DEN; /* Scaled input */

if(*LINK==I) fprintf(file3,"%f %tXn",QE,QECA);
if(*LINK==2) fprintf(file4,"%f %t'Xn",QE,QECA);
if(*LINK==3) fprinff(file5,"%f %f_n",QE,QECA);

TORQUE = INPUT(*TOR MAX/6.0); /* Actual input */

65

/*

PURPOSE:

where

To approximate the steady-state error of the system by
EBARA3/(VSQBAR + EBAR^2)

EBAR -- E + ESUM*LAMBDA

VSQBAR = V^2 + VELSQSUM*LAMBDA
LAMBDA = forgetting factor
ESUM = previous EBAR
VSQSUM = previous VSQBAR
E = error

V = velocity error

AUTHOR: Darrell L. Gerber

DATE: 4/21/93

VARIABLES: X: System states
LINK: Link being estimated
SSE: Steady-state error estimate for LINK
ERROR: Current error in position
VEL_ERROR: Current error in velocity
ERROR_BAR: EBAR

VEL_ERROR_BAR: VSQBAR

,/

void SteadyState_Error(double X[NEQ+I],int *LINK,double *SSE)
{

double ERROR,VEL_ERROR,LAMBDA,ERROR_BAR,VEL_ERROR_BAR;

switch(*LINK)
{

case 1:

ERROR = X[2];
VEL_ERROR = X[3];
LAMBDA = 0.5;

ERROR_SUM1 = LAMBDA*ERROR_SUM1 + ERROR;
VELSQ_ERROR_SUM1 = LAMBDA*VELSQ_ERROR_SUM1 +

VEL_ERROR*VEL_ERROR;
ERROR_BAR = ERROR_SUM 1;

VEL_ERROR_BAR = VELSQ_ERROR_SUM 1;
break;

case 2:

ERROR -- X[5];
VEL_ERROR = X[6];
LAMBDA = 0.5;
ERROR_SUM2 = LAMBDA*ERROR_SUM2 + ERROR;
VELSQ__ERROR_SUM2 = LAMBDA*VELSQ_ERROR_SUM2 +

VEL_ERROR*VEL_ERROR;
ERROR_BAR = ERROR_SUM2;
VEL_ERROR_BAR = VELSQ_ERROR_SUM2;
break;

case 3:

ERROR ---X[8];
VEL_ERROR -- X[9];
LAMBDA = .5;
ERROR_SUM3 = LAMBDA*ERROR_SUM3 + ERROR;

VELSQ__ERROR_SUM3 = LAMBDA*VELSQ_ERROR_SUM3 +
VEL_ERROR*VEL_ERROR;

ERROR_BAR = ERROR_SUM3;

VEL_ERROR_BAR -- VELSQ_ERROR_SUM3;
break;

default:

printf("Error In LINK kn");

*SSE = ERROR_BAR*ERROR_BAR*ERROR_BAR/(50.0*VEL_ERROR_BAR +
ERROR_BAR*ERROR_BAR);

66

PURPOSE: To use a SISO Fuzzy-Logic controller to determine
the necssary change in D based on the approximated
steady_state error.

AUTHOR: Darrell L. Gerber

DATE: 4/21/93

VARIABLES: SSE RANGE: Maximum expected steady-state error

MAX_dD:
QSSE:
SSLP:
SSMP:
SSSP:
SSZE:
SSSN:
SSMN:
SSLN:
U"

UU:
NUM:
DEN:
Ve:

Yec:

INPUT:

Maximum allowed change in D
Quantized steady-state error
Steady-state error Large Positive
Steady-state error Medium Positive
Steady-state error Small Positive
Steady-state error Zero
Steady-state error Small Negative
Steady-state error Medium Negative
Steady-state error Large Negative
Membership function value
Universe of discourse value

Numerator of the input value
Denominator of the input value

Temp variable for the error membership
function

Temp variable for the change in error
membership function
The quantized change in D

67

,/

void Adaptation(double *SSE,double *dD)

{
double SSE_RANGE,QSSE,u [8],UU[8],NUM=0.0,DEN=0.0,INPUT,MAX_dD;

int I,S SLP=0,SSMP=0,SSSP=0,SSZE=0,S SSN=0,SSMN=0,S SLN=0;

SSE_RANGE = 5.0;
MAX_dD = 1.0;

/* Set input/output ranges */

QSSE = *SSE*6/SSE_RANGE; /* Quantize approximate steady-state error */

if(QSSE>=6.0)
{

QSSE = 6.0;
SSLP = 1;

}
if((QSSE>--4.0)&&(QSSE<6.0)) SSLP=SSMP=I;
if((QSSE>=2.0)&&(QSSE<4.0)) SSMP=SSSP=I;
if((QSSE>=0.0)&&(QSSE<2.0)) SSSP=SSZE=I;
if((QSSE>=-2.0)&&(QSSE<0.0)) SSZE=SSSN=I;
if((QSSE>=-4.0)&&(QSSE<-2.0)) SSSN=SSMN= 1;
if((QS SE>=-6.0)&&(QSSE<-4.0)) SSMN=SSLN=I;

if(QSSE<-6.0)
{

QSSE=-6.0;
SSLN=I;

}

/* Determine applicable membership functions */

68

for(I=l;I<=7;I++) u[I]=UU[I]=O.O; /* Initialize membership funtction value */
/* and Universe of Discourse value */

if(SSLP)
{

u[1] = sinfPI/4.0*(QSSE-4.0));
UU[1] = -6.0;

}

/* Rule 1: If QSSE is LP then LN */

if(SSMP)
{

u[2] = sin(PI/4.0*(QSSE-2.0));
UU[2] = -4.0;

}

/* Rule 2: If QSSE is MP then MN */

if(SSSP)
{

u[3] = sin(PI/4.0*(QSSE-0.0));
UU[3] = -2.0;

}

/* Rule 3: If QSSE is SP then SN */

iESSZE)
{

u[4] = sin(PI/4.0*(QSSE+2.0));
UU[4] = 0.0;

}

/* Rule 4: If QSSE is ZE then ZE */

if(SSSN)
{

u[5] = sin(PI/4.0*(QSSE+4.0));
UU[5] = 2.0;

}

/* Rule 5: If QSSE is SN then SP */

if(SSMN)
{

u[6] = sin(PI/4.0*(QSSE+6.0));
UU[6] = 4.0;

}

/* Rule 6: If QSSE is MN then MP */

if(SSLN)

{
u[7] = sin(PI]4.0*(QSSE+8.0));
UU[7] = 6.0;

}

/* Rule 7: If QSSE is LN then LP */

for(I=l ;I<=7;I++)
{

NUM = NUM + u[I]*UU[I];
DEN = DEN + u[l'];

}

/* Approximate Center of Gravity Method */

if((DEN<=0.0001)&&(DEN>=0.0))DEN = 0.0001;/* Division by zeroprotection
if((DEN>=-0.0001)&&(DEN<0.0))DEN = -0.0001;

INPUT = NUM/DEN; /* Quantized change in D */

*dD = INPUT*MAX_dD/6.0; /* Actual variation in D */

69

*/

